3.263 \(\int \cos ^2(a+b x) \sqrt{\csc (a+b x)} \, dx\)

Optimal. Leaf size=67 \[ \frac{2 \cos (a+b x)}{3 b \sqrt{\csc (a+b x)}}+\frac{4 \sqrt{\sin (a+b x)} \sqrt{\csc (a+b x)} F\left (\left .\frac{1}{2} \left (a+b x-\frac{\pi }{2}\right )\right |2\right )}{3 b} \]

[Out]

(2*Cos[a + b*x])/(3*b*Sqrt[Csc[a + b*x]]) + (4*Sqrt[Csc[a + b*x]]*EllipticF[(a - Pi/2 + b*x)/2, 2]*Sqrt[Sin[a
+ b*x]])/(3*b)

________________________________________________________________________________________

Rubi [A]  time = 0.0505877, antiderivative size = 67, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {2628, 3771, 2641} \[ \frac{2 \cos (a+b x)}{3 b \sqrt{\csc (a+b x)}}+\frac{4 \sqrt{\sin (a+b x)} \sqrt{\csc (a+b x)} F\left (\left .\frac{1}{2} \left (a+b x-\frac{\pi }{2}\right )\right |2\right )}{3 b} \]

Antiderivative was successfully verified.

[In]

Int[Cos[a + b*x]^2*Sqrt[Csc[a + b*x]],x]

[Out]

(2*Cos[a + b*x])/(3*b*Sqrt[Csc[a + b*x]]) + (4*Sqrt[Csc[a + b*x]]*EllipticF[(a - Pi/2 + b*x)/2, 2]*Sqrt[Sin[a
+ b*x]])/(3*b)

Rule 2628

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(a*(a*Csc[e
 + f*x])^(m - 1)*(b*Sec[e + f*x])^(n + 1))/(b*f*(m + n)), x] + Dist[(n + 1)/(b^2*(m + n)), Int[(a*Csc[e + f*x]
)^m*(b*Sec[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && NeQ[m + n, 0] && IntegersQ[
2*m, 2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \cos ^2(a+b x) \sqrt{\csc (a+b x)} \, dx &=\frac{2 \cos (a+b x)}{3 b \sqrt{\csc (a+b x)}}+\frac{2}{3} \int \sqrt{\csc (a+b x)} \, dx\\ &=\frac{2 \cos (a+b x)}{3 b \sqrt{\csc (a+b x)}}+\frac{1}{3} \left (2 \sqrt{\csc (a+b x)} \sqrt{\sin (a+b x)}\right ) \int \frac{1}{\sqrt{\sin (a+b x)}} \, dx\\ &=\frac{2 \cos (a+b x)}{3 b \sqrt{\csc (a+b x)}}+\frac{4 \sqrt{\csc (a+b x)} F\left (\left .\frac{1}{2} \left (a-\frac{\pi }{2}+b x\right )\right |2\right ) \sqrt{\sin (a+b x)}}{3 b}\\ \end{align*}

Mathematica [A]  time = 0.101008, size = 53, normalized size = 0.79 \[ \frac{\sqrt{\csc (a+b x)} \left (\sin (2 (a+b x))-4 \sqrt{\sin (a+b x)} F\left (\left .\frac{1}{4} (-2 a-2 b x+\pi )\right |2\right )\right )}{3 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[a + b*x]^2*Sqrt[Csc[a + b*x]],x]

[Out]

(Sqrt[Csc[a + b*x]]*(-4*EllipticF[(-2*a + Pi - 2*b*x)/4, 2]*Sqrt[Sin[a + b*x]] + Sin[2*(a + b*x)]))/(3*b)

________________________________________________________________________________________

Maple [A]  time = 1.098, size = 88, normalized size = 1.3 \begin{align*}{\frac{1}{\cos \left ( bx+a \right ) b} \left ({\frac{2}{3}\sqrt{\sin \left ( bx+a \right ) +1}\sqrt{-2\,\sin \left ( bx+a \right ) +2}\sqrt{-\sin \left ( bx+a \right ) }{\it EllipticF} \left ( \sqrt{\sin \left ( bx+a \right ) +1},{\frac{\sqrt{2}}{2}} \right ) }+{\frac{2\, \left ( \cos \left ( bx+a \right ) \right ) ^{2}\sin \left ( bx+a \right ) }{3}} \right ){\frac{1}{\sqrt{\sin \left ( bx+a \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(b*x+a)^2*csc(b*x+a)^(1/2),x)

[Out]

(2/3*(sin(b*x+a)+1)^(1/2)*(-2*sin(b*x+a)+2)^(1/2)*(-sin(b*x+a))^(1/2)*EllipticF((sin(b*x+a)+1)^(1/2),1/2*2^(1/
2))+2/3*cos(b*x+a)^2*sin(b*x+a))/cos(b*x+a)/sin(b*x+a)^(1/2)/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \cos \left (b x + a\right )^{2} \sqrt{\csc \left (b x + a\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^2*csc(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(b*x + a)^2*sqrt(csc(b*x + a)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\cos \left (b x + a\right )^{2} \sqrt{\csc \left (b x + a\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^2*csc(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

integral(cos(b*x + a)^2*sqrt(csc(b*x + a)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \cos ^{2}{\left (a + b x \right )} \sqrt{\csc{\left (a + b x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)**2*csc(b*x+a)**(1/2),x)

[Out]

Integral(cos(a + b*x)**2*sqrt(csc(a + b*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \cos \left (b x + a\right )^{2} \sqrt{\csc \left (b x + a\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^2*csc(b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate(cos(b*x + a)^2*sqrt(csc(b*x + a)), x)